首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   7篇
  国内免费   13篇
化学   138篇
晶体学   2篇
力学   17篇
综合类   1篇
数学   4篇
物理学   27篇
  2024年   1篇
  2023年   5篇
  2022年   16篇
  2021年   12篇
  2020年   20篇
  2019年   5篇
  2018年   9篇
  2017年   5篇
  2016年   9篇
  2015年   6篇
  2014年   1篇
  2013年   10篇
  2012年   6篇
  2011年   4篇
  2010年   1篇
  2009年   4篇
  2008年   6篇
  2007年   8篇
  2006年   5篇
  2005年   4篇
  2004年   8篇
  2003年   6篇
  2002年   4篇
  2001年   5篇
  2000年   4篇
  1999年   2篇
  1998年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   4篇
  1992年   2篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1981年   2篇
  1979年   2篇
  1978年   1篇
排序方式: 共有189条查询结果,搜索用时 234 毫秒
1.
2.
3.
The inferior utilization efficiency of light is the main obstacle to the practical application of traditional photocatalysts such as TiO2 and ZnO. In this regard, the development of novel photocatalysts with the capability of harvesting full spectrum light (from ultraviolet (UV) to near-infrared (NIR)) energy is a promising solution for solar energy conversion and environmental remediation. Here, we report the discovery of a single material that can harvest UV, visible (VIS), and NIR radiations to decompose heavy metal contaminants in aqueous solution. Zeolitic imidazolate framework-67 (ZIF-67) rhombic dodecahedrons were synthesized through a facile solution approach and employed in the reduction of Cr(VI) under UV−VIS−NIR pulsed laser irradiation, which was generated from the fundamental, second and third harmonics of Nd:YAG laser, respectively. The nanostructures showed efficient Cr(VI) reduction under UV, VIS and NIR laser irradiation and the measured reduction efficiency (%) was 71.22%, 69.52%, and 40.79%, respectively after 120 min. A possible explanation for the photocatalytic activity in Cr(VI) reduction was proposed. This is the first study of its kind where pulsed laser and ZIF-67 rhombic dodecahedrons capable of harvesting full spectrum light energy have been employed for the removal of Cr(VI) from water. The extraordinary capacity of harvesting full-spectrum light and long-term stability make ZIF-67 a potential photocatalyst for environmental remediation.  相似文献   
4.
5.
《中国化学快报》2021,32(11):3265-3276
The efficient utilization of solar energy through photocatalysis is ideal for solving environmental issues and the development sustainable future. BiOBr-based semiconductors possess unique narrowed bandgaps and layered structures, thereby widely studied as photocatalysts for environmental remediation. However, a little has been focused on the comprehensive reviewing of BiOBr despite its extensive and promising applications. In this review, the state-of-the-art developments of BiOBr-based photocatalysts for environmental remediation are summarized. Particular focus is paid to the synthetic strategies for the control of the resulting morphologies, as well as efficient modification strategies for improving the photocatalytic activities. These include boosting the bulk phase by charge separation, enhancing the spatial charge separation, and engineering the surface states. The environmental uses of BiOBr-based photocatalysts are also reviewed in terms of purification of pollutants and CO2 reduction. Finally, future challenges and opportunities of BiOBr-based materials in photocatalysis are discussed. Overall, this review provides a good basis for future exploration of high-efficiency solar-driven photocatalysts for environmental sustainability.  相似文献   
6.
Treatment of polluted soil is one of the priorities in the search of a more sustainable planet. Electrochemically assisted soil remediation has been considered a good option for removing organic contaminants contained in soil, including the removal of volatile organic compounds, associated with gaseous streams produced during the treatment. Also, recently, electrochemical gas treatment technologies have been appointed as promising for the treatment of volatile organic compounds. In this work, we review the current opinion about the most recent studies in both areas. The first section focuses on the production of gaseous compounds during soil remediation by conventional and electrochemical systems. The second section describes the recent progress in the integration of adsorption and absorption with electrochemical processes. Finally, we discuss the holistic application of assisted electrochemical technologies in soil remediation, considering also emerging processes recently published in the literature.  相似文献   
7.
Chlordecone (CLD) is a persistent toxic chlorinated pesticide which contaminates different ecosystems in French West Indies. A soil remediation process including zero-valent iron (ZVI) has produced promising results but failed to completely degrade CLD, and the analytical procedures used yielded little information on the transformation products. To fill these gaps, dechlorination of aqueous CLD by micrometric particles of ZVI has been investigated. Aliquots of water with 25% (v/v) of acetone spiked with 100 ppm CLD were taken at different times during a 30-day ZVI treatment and directly analysed by ultra-high-performance liquid chromatography in negative electrospray ionisation mode. CLD has been totally transformed after 14 days into 14 dechlorinated degradation products, including 9 isomeric compounds. The maximum chloride concentrations appearing in the medium represent 44% of that which would result from total dechlorination of CLD. The CLD transformation products identified by accurate mass measurements on an ultra-high-resolution Q-TOF mass spectrometer (Q-TOF-MS) were C10H3Cl9O2, C10H4Cl8O2, C10H5Cl7O2, C10H6Cl6O2 and C10H7Cl5O2. The results show the interest of LC-Q-TOF-MS for identifying transformation products of organic contaminants, and the effectiveness of micrometric ZVI particles to totally transform CLD into less chlorinated products.  相似文献   
8.
Carbon dots are prepared and immobilized onto spherical SiO_2 through a one-step thermal oxidation and then decorated with metallothionein(MT), a protein with high affinity towards thiophilic metals. The MT-carbon dots composites are characterized by means of FT-IR, SEM and TGA, giving rise to a MT loading amount of 823 μg g~(-1). The adsorption of cadmium by the composites is a fast process and follows Langmuir model. In comparison with native SiO_2, a 2- and 2.4-folds improvement on the static and dynamic adsorption capacity of the composites for cadmium are obtained, respectively. Moreover,the adsorption efficiency is not affected by the presence of other metals. Finally, the composites are successfully applied for the removal of cadmium in a series of environmental water samples.  相似文献   
9.
Potential theory and Stokes' stream function techniques are used to investigate the flow structure around the recirculation system developed by Gvirtzman and Gorelick (1992, 1993), which consists of an extraction well and a gallery (trench) for the recharge of treated water to the aquifer. Analytical formulas are derived for the drawdown, velocity, and stream function for a model in which the extraction well is modeled as a uniformly distributed line sink and the gallery is modeled as a uniformly distributed ring source. Travel times are reported for water particles traveling along the streamlines containing 50 and 90% of the flow for various degrees of well penetration and various radii of the ring source. The travel times along the streamline resulting in the shortest travel time (not necessarily the shortest path) are also reported for various degrees of well penetration and various radii of the ring source. The method completely eliminates the use of numerical finite-difference or finite-element methods and can be used for optimization of technological parameters of this remediation system.  相似文献   
10.
This paper presents laboratory-scale experimental results of the behavior of ferrofluids in porous media consisting of sands and sediments. Ferrofluids are colloidal suspensions of magnetic particles stabilized in various carrier liquids. In the presence of an external magnetic field, a ferrofluid becomes magnetized as the particles align with the magnetic field. We investigate the potential for controlling fluid emplacement in porous media using magnetic fields. These experiments show that in laboratory-scale porous media experiments (up to 0.25m), with both vertical gravitational forces and lateral magnetic forces acting simultaneously, the magnetic field produces strong attractive forces on the ferrofluid, particularly in the vicinity of the magnet. These holding forces result in a predictable configuration of the fluid in the porous medium which is dependent on the magnetic field and independent of flow pathway or heterogeneity of the porous medium. No significant retention effects due to flow through variably saturated sands are observed. While the proposed field engineering applications of ferrofluids are promising, the observations to date are particularly relevant at the laboratory scale where the decrease in magnetic field strength with distance from a magnet is less of a limitation than in larger scale applications. Ferrofluids may find immediate application in any situation where it is desirable to control the motion or final configuration of fluid in an experimental flow apparatus without direct physical contact.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号